PENGENALAN OTOMATIS PELAT NOMOR KENDARAAN BERMOTOR DALAM CITRA DIGITAL MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION UNTUK IDENTIFIKASI DAN KLASIFIKASI YANG AKURAT DALAM BERBAGAI APLIKASI, SEPERTI MANAJEMEN PARKIR, PEMANTAUAN LALU LINTAS, DAN SISTEM KEAMANAN KENDARAAN

Authors

  • I Putu Eka Indrawan Univeristas PGRI Mahadewa Indonesia
  • Luh Putu Risma Noviana Univeristas PGRI Mahadewa Indonesia
  • Ayu Aprilyana Kusuma Dewi Univeristas PGRI Mahadewa Indonesia

DOI:

https://doi.org/10.59819/jmti.v15i1.4547

Keywords:

Digital Image Recognition, Motor Vehicle Number, Artificial Neural Networks Backpropagation.

Abstract

Automatic recognition of motor vehicle license plates in digital images is crucial for applications such as parking management, traffic monitoring, and vehicle security. This study implements a backpropagation artificial neural network to enhance accuracy in identifying and classifying license plate characters. The research methodology includes image acquisition, preprocessing using grayscale conversion, noise reduction, and edge detection to improve image clarity. Feature extraction isolates key characteristics, which serve as input for the neural network. The backpropagation algorithm adjusts weights and biases through iterative learning to minimize errors. Testing on 100 image samples demonstrated an overall accuracy of 88%, with well-lit images achieving 94% accuracy, while noisy images had a reduced accuracy of 76%. Errors primarily resulted from poor lighting, distorted characters, and occlusions. The findings indicate that optimized dataset training, advanced preprocessing techniques, and refined neural network parameters significantly improve recognition performance. The system offers an efficient alternative to manual identification, reducing human error and improving operational efficiency. Future work includes integrating deep learning models, increasing training data diversity, and optimizing network layers to enhance robustness across various environmental conditions. This research contributes to automated intelligent transportation systems, offering real-time, high-accuracy vehicle identification for enhanced security and traffic regulation.

Downloads

Download data is not yet available.

References

Jagtap, V. H., Dhotre, R. V., Khandare, U. R., Khuspe, H. N., & Kokare, R. B. (2024). Automatic License Plate Recognition System: a Systematic Survey. Journal of Engineering and Technology for Industrial Applications, 10(48), 129–135. https://doi.org/10.5935/jetia.v10i48.955

Joshua, Hendryli, J., & Herwindiati, D. E. (2020). Automatic license plate recognition for parking system using convolutional neural networks. Proceedings of 2020 International Conference on Information Management and Technology, ICIMTech 2020, August, 71–74. https://doi.org/10.1109/ICIMTech50083.2020.9211173

Mhatre, A., Sharma, P., & Maurya, A. R. (2023). Deep Learning Based Automatic Vehicle License Plate Recognition System for Enhanced Vehicle Identification. International Journal on Recent and Innovation Trends in Computing and Communication, 11(9), 10–20. https://doi.org/10.17762/ijritcc.v11i9.8112

Padmasiri, H., Shashirangana, J., Meedeniya, D., Rana, O., & Perera, C. (2022). Automated License Plate Recognition for Resource-Constrained Environments. Sensors, 22(4), 1–29. https://doi.org/10.3390/s22041434

Putra Wirman, S., Fitrya, N., Junaidi, R., & Rizki, N. G. (2022). Rancang Bangun Sistem Pengenalan Plat Nomor Kendaraan Menggunakan Jaringan Saraf Tiruan Backpropagation. Photon: Jurnal Sain Dan Kesehatan, 12(2), 148–157. https://doi.org/10.37859/jp.v12i2.2586

Rajendra, P., Sudheer, K., & Boadh, R. (2017). Design of a Recognition System Automatic Vehicle License Plate through a Convolution Neural Network. International Journal of Computer Applications, 177(3), 47–54. https://doi.org/10.5120/ijca2017915703

Setiawan, G. I. (2024a). Jurnal Manajemen dan Teknologi Informasi ( JMTI ) ANALISIS PERBANDINGAN BIAYA DAN SERVERLESS. 14(1), 1–9.

Setiawan, G. I. (2024b). Jurnal Manajemen dan Teknologi Informasi ( JMTI ) ANALYSIS OF CANNY EDGE DETECTION METHOD FOR FACIAL. 15(2).

Silva, S. M., & Jung, C. R. (2020). Real-time license plate detection and recognition using deep convolutional neural networks. Journal of Visual Communication and Image Representation, 71, 102773. https://doi.org/10.1016/j.jvcir.2020.102773

Published

2025-04-30