PERBANDINGAN REGRESI LINIER BERGANDA DENGAN SPLINE TRUNCATED (STUDI KASUS: KEMISKINAN DI PROVINSI PAPUA)
Keywords:
Regression, Parametric, Nonparametric, PovertyAbstract
Regression analysis was used to study the pattern of the relationship between the response variable and the predictor variable. There are two approaches used in this method, namely parametric and nonparametric. The most popular parametric regression used is multiple linear regression. In addition to parametric regression there are nonparametric regression approaches. One of the well-known nonparametric regression is Spline Truncated. This research to compare the multiple linear regression method with the Spline Truncated in the case of poverty in Papua Province. Based on the results of research on poverty cases in Papua Province, it can be concluded that the Spline Truncated regression is better than the multiple linear regression with R2 of 88.39%.
Downloads
References
Ali, M. (2013). The Semitization of Itihasa: Intertextuality of the Mahabharata and the Ramayana in the Judeo-Islamic texts. Atavisme: Jurnal Ilmiah Kajian Sastra, 16(1), 1-13.
Draper, N.R., dan Smith, H. (1998). Applied Regression Analysis, Third Edition. John Wiley &Sons, USA.
Grömping, U. (2009). Variable Importance Assessment in Regression: Linear Regression versus Random Forest. The American Statistician, 63(4), (308–319), doi:10.1198/tast.2009.08199.
Dani, A. T. R. Adrianingsih, N. Y. dan Ainurrochmah, A. (2020) Pengujian Hipotesis Simultan Model Regresi Nonparametrik Spline Truncated dalam Pemodelan Kasus Ekonomi: Journal of Probability and Statistics, 01, (98-106).
Hardle, W., (1990), Applied Nonparametric Regression, New York: Cambridge University Press.
Liu, D., Lin, X., dan Ghosh, D. (2007). Semiparametric Regression of Multidimensional Genetic Pathway Data : Least-Squares Kernel Machines and Linear Mixed Models: Biometrics, 63, (1079–1088), doi:10.1111/j.1541-0420.2007.00799.x.
Liu, X., and Preve, D., (2016). Measure of Location-based Estimators in Simple Linear Regression: Journal of Statistical Computation and Simulation, 86(9), (1771–1784). doi:10.1080/00949655.2015.1082131.
Saputro, D. R. S., Demu, K. R. dan Widyaningsih, P. (2018). Nonparametric Truncated Spline Regression Model on Data of Human Development Index (HDI) in Indonesia: IOP Conf. Series: Journal of Physics, 1188.
Sukendra, I. K. (2020). Developing teaching materials for Trigonometry in mathematics with realistic orientation using HOTS questions. Journal of Physics: Conference Series, 1663(1). https://doi.org/10.1088/1742-6596/1663/1/012020
Sukendra, I. K., Suharta, I. G. P., Ardana, I. M., & Ariawan, P. W. (2022). The Mechanism Development of Digital Mathematics Material Study Based on STEM. 7(2), 4098–4104. https://kalaharijournals.com/resources/FebV7_I2_495.pdf
Widana, I. W., Sumandya, I. W., Sukendra, K., & Sudiarsa, I. W. (2020). Analysis of Conceptual Understanding, Digital Literacy, Motivation, Divergent of Thinking, and Creativity on the Teachers Skills in Preparing Hots-based Assessments. Journal of Advanced Research in Dynamical and Control Systems, 12(8), 459–466. https://doi.org/10.5373/jardcs/v12i8/20202612
Published
How to Cite
Issue
Section
Copyright (c) 2022 LP3M Universitas PGRI Mahadewa Indonesia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Hak cipta mencakup hak eksklusif untuk mereproduksi dan mengirimkan artikel ini dalam semua bentuk dan media, termasuk mencetak ulang, memotret, mikrofilm dan reproduksi serupa lainnya, serta terjemahannya. Reproduksi dari bagian manapun dari jurnal ini, penyimpanannya di database dan transmisinya dengan bentuk atau media apa pun, seperti salinan elektronik, elektrostatik dan mekanis, fotokopi, rekaman, media magnetik, dan lain-lain, akan diizinkan hanya dengan izin tertulis dari penerbit jurnal.