PERBANDINGAN REGRESI LINIER BERGANDA DENGAN SPLINE TRUNCATED (STUDI KASUS: KEMISKINAN DI PROVINSI PAPUA)

Authors

  • Ni Putu Ayu Mirah Mariati Universitas Mahasaraswati Denpasar
  • I Wayan Sudiarsa Universitas PGRI Mahadewa Indonesia
  • Ni Made Sukma Sanjiwani Universitas Mahasaraswati Denpasar

Keywords:

Regression, Parametric, Nonparametric, Poverty

Abstract

Regression analysis was used to study the pattern of the relationship between the response variable and the predictor variable. There are two approaches used in this method, namely parametric and nonparametric. The most popular parametric regression used is multiple linear regression. In addition to parametric regression there are nonparametric regression approaches. One of the well-known nonparametric regression is Spline Truncated. This research to compare the multiple linear regression method with the Spline Truncated in the case of poverty in Papua Province. Based on the results of research on poverty cases in Papua Province, it can be concluded that the Spline Truncated regression is better than the multiple linear regression with R2 of 88.39%.

Downloads

Download data is not yet available.

References

Ali, M. (2013). The Semitization of Itihasa: Intertextuality of the Mahabharata and the Ramayana in the Judeo-Islamic texts. Atavisme: Jurnal Ilmiah Kajian Sastra, 16(1), 1-13.

Draper, N.R., dan Smith, H. (1998). Applied Regression Analysis, Third Edition. John Wiley &Sons, USA.

Grömping, U. (2009). Variable Importance Assessment in Regression: Linear Regression versus Random Forest. The American Statistician, 63(4), (308–319), doi:10.1198/tast.2009.08199.

Dani, A. T. R. Adrianingsih, N. Y. dan Ainurrochmah, A. (2020) Pengujian Hipotesis Simultan Model Regresi Nonparametrik Spline Truncated dalam Pemodelan Kasus Ekonomi: Journal of Probability and Statistics, 01, (98-106).

Hardle, W., (1990), Applied Nonparametric Regression, New York: Cambridge University Press.

Liu, D., Lin, X., dan Ghosh, D. (2007). Semiparametric Regression of Multidimensional Genetic Pathway Data : Least-Squares Kernel Machines and Linear Mixed Models: Biometrics, 63, (1079–1088), doi:10.1111/j.1541-0420.2007.00799.x.

Liu, X., and Preve, D., (2016). Measure of Location-based Estimators in Simple Linear Regression: Journal of Statistical Computation and Simulation, 86(9), (1771–1784). doi:10.1080/00949655.2015.1082131.

Saputro, D. R. S., Demu, K. R. dan Widyaningsih, P. (2018). Nonparametric Truncated Spline Regression Model on Data of Human Development Index (HDI) in Indonesia: IOP Conf. Series: Journal of Physics, 1188.

Sukendra, I. K. (2020). Developing teaching materials for Trigonometry in mathematics with realistic orientation using HOTS questions. Journal of Physics: Conference Series, 1663(1). https://doi.org/10.1088/1742-6596/1663/1/012020

Sukendra, I. K., Suharta, I. G. P., Ardana, I. M., & Ariawan, P. W. (2022). The Mechanism Development of Digital Mathematics Material Study Based on STEM. 7(2), 4098–4104. https://kalaharijournals.com/resources/FebV7_I2_495.pdf

Widana, I. W., Sumandya, I. W., Sukendra, K., & Sudiarsa, I. W. (2020). Analysis of Conceptual Understanding, Digital Literacy, Motivation, Divergent of Thinking, and Creativity on the Teachers Skills in Preparing Hots-based Assessments. Journal of Advanced Research in Dynamical and Control Systems, 12(8), 459–466. https://doi.org/10.5373/jardcs/v12i8/20202612

Published

2022-10-13

How to Cite

Ni Putu Ayu Mirah Mariati, I Wayan Sudiarsa, & Ni Made Sukma Sanjiwani. (2022). PERBANDINGAN REGRESI LINIER BERGANDA DENGAN SPLINE TRUNCATED (STUDI KASUS: KEMISKINAN DI PROVINSI PAPUA). Widyadari, 23(2), 240 - 246. Retrieved from https://ojs.mahadewa.ac.id/index.php/widyadari/article/view/2254