Estimator Truncated Spline dan Sifat Liniernya dalam Regresi Nonparametrik Multivariabel

Authors

  • Ni Putu Ayu Mirah Mariati Universitas Mahasaraswati Denpasar
  • I Wayan Sudiarsa Universitas PGRI Mahadewa Indonesia
  • Gusti Ayu Made Arna Putri Universitas Mahasaraswati Denpasar

DOI:

https://doi.org/10.59672/emasains.v13i2.4048

Keywords:

Spline, Nonparametric Regression

Abstract

Analisis regresi digunakan untuk menyelidiki pola hubungan antara variabel dependen dan variabel independen. Hal ini dapat dilakukan dengan dua pendekatan, yaitu pendekatan parametrik dan nonparametrik. Pendekatan parametrik mengasumsikan bentuk model mengikuti suatu pola tertentu. Namun, jika tidak ada informasi tentang bentuk fungsi regresi, maka pendekatan yang digunakan adalah pendekatan regresi nonparametrik. Ada beberapa pendekatan untuk menaksir kurva regresi nonparametrik, salah satunya adalah truncated spline. Keuntungan dari truncated spline adalah dapat menggambarkan perubahan pola perilaku fungsi pada subinterval tertentu. Estimator spline sangat bergantung pada titik knot dan sifat estimatornya adalah linier.

Downloads

Download data is not yet available.

References

Eubank, R. L. (1999). Nonparametric Regression and Spline Smoothing. New York: Marcel Deker.

Takezawa, K. (2006). Introduction to Nonparametric Regression . USA: John Wiley&Sons.

Hardle, W. K. (1994). Applied Nonparametric Regression. New York: Cambridge University Press.

Draper, N. R and Smith, H. (1998). Applied Regression Analysis . USA: John Wiley&Sons.

Wahba, G. (1985). A Comparison of GCV and GML for Choosing The Smoothing Parameterin The Generalized Spline Smoothing Problem, The Annals of Statistics. 13 (4), 1378-1402.

Wahba, G. (1990). Spline Models For Observasion Data. Pensylvania: SIAM.

Dette, H., Möllenhoff, K., Volgushev, S., and Bretz, F. (2018). Equivalence of Regression Curves. Journal of the American Statistical Association. 113 (522), 711–729.

Fitriana, D.m Budiantara, I.N.m and Ratnasari, V. (2017). Semiparametric Spline Truncated Regression on Modelling AHH in Indonesia. Proceedings The 3rd International Seminar on Science and Technology, 2 , 26–31.

Fithriasari, K., Hariastuti, I., and Wening, K. S. (2020). Handling Imbalance Data in Classification Model with Nominal Predictors, International Journal Of Computing Science And Applied Mathematics. 6(1), 33-37.

Liu, X., and Preve, D. (2016). Measure of location-based estimators in simple linear regression, Journal of Statistical Computation and Simulation. 86(9), 1771–1784,

Mozumder, S. I., Rutherford, M., and Lambert, P. (2017). Direct Likelihood Inference On The Cause‐Specific Cumulative Incidence Function: A Flexible Parametric Regression Modelling Approach. Statistics in Medicine. 37, 1–16.

Wang, X., Shen, J., and Ruppert, D. (2011). On the asymptotics of penalized spline smoothing, Electronic Journal of Statistics. 5, 1–17.

Wang, Y. (2011). Smoothing Splines. Methods and Applications. New York,: Chapman & Hall CRC

Hidayat, R., Budiantara, I.N., Otok, B.W., and Ratnasari, V. (2019). A reproducing kernel hilbert space approach and smoothing parameters selection in spline-kernel regression, Journal of Theoretical and Applied Information Technology, 97 (2), 465–475.

Gu, C. (2013). Smoothing Spline ANOVA Models. New York: Springer.

Wahba, G. (1990). Spline Models for Observational Data. Pensylvania: SIAM.

Published

2024-09-25